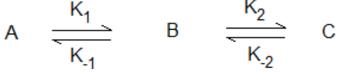

RAMAKRISHNA MISSION VIDYAMANDIRA (Residential Autonomous College affiliated to University of Calcutta) **B.A./B.Sc. FIRST SEMESTER EXAMINATION, DECEMBER 2017** FIRST YEAR [BATCH 2017-20] **INDUSTRIAL CHEMISTRY (Honours)** : 12/12/2017 Date Paper: I Time : 11.00 am – 3.00 pm Full Marks: 75 (Use a separate Answer Book for each group) Group – A Answer any five questions: i) Predict the change in structure and stability of the following radicals. CH₃, CF₃, CHF₂, CH₂F ii) Between cis-2-butene and trans-2-butene which one under goes hydrogenation in faster rate and why?


- Arrange the following compounds with increasing order of acidity and give explanation. 2. i) (a) Ethanol, (b) Phenol, (c) Acetic acid
 - ii) Compare the basicity strength of the following compounds with proper explanations. (2+3)

 NH_2

NO₂

С

NO₂

В

1.

NH₂

NO₂

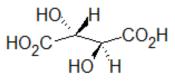
А

Here, stability of C > A > B and $K_2 > K_{-1} > K_1 \square K_{-2}$

- , which one is more stable in (i) Between keto and enol form of ethylacetoacetate $(H_3C - I)$ 4. vapour phase and why?
 - (ii) Predict the stability of thermodynamically and kinetically controlled products during the sulfonation of Naphthalene and draw the energy profile diagram for it.
- Draw all possible stereoisomers of 2,3,4-trihydroxypentane and state the relationship among 5. themselves. Mark all the stereocentres as chirotopic, achirotopic, stereogenic and nonstereogenic as applicable.

(2)

(2+3)


[5 X 5]

(2+3)

(3)

(5)

- Draw the potential energy diagram for different conformations of *n*-butane with respect to i) 6. $C_2 - C_3$ single bond rotation.
 - ii) Arrange the following molecules in increasing order of dipole moment with proper explanation $(a) CH_3 CL (b) CH_2 Cl_2$ (c) CHCl₃ (d) CCl₄ (3+2)
- Write two conditions for a molecule to exhibit geometrical isomerism. 7. i)
 - ii) Draw the orbital picture of acrylonitrile $(CH_2 = CH C = N)$ indicating the state of hybridisation of each carbon atom. 2+(1+2)
- Define resonance energy taking benzene molecule as an example. 8. i)
 - ii) What do you mean by specific rotation?
 - iii) Convert the following molecule to staggered form in Newmann and sawhorse Projection. (2+1+2)

<u>Group – B</u>

Answer any five questions:

- 9. i) Which quantum number solely determines the allowed energies for a hydrogen like species? Write the expression for energy and explain the terms and sign present therein.
 - ii) Find out the radius values for first and second Bohr orbits of Be^{3+} . (Given: a_0 of H atom = 0.529 Å) (1+2)+2
- 10. i) State and explain Hund's rule of maximum spin and orbital multiplicity.
 - ii) Find out the ground state term symbol of oxygen atom.
- 11. i) A, B, C and D are four elements of the same period in Periodic Table. The first ionisation (I_1, ev) and second ionisation energy (I_2, ev) of the elements are listed below:

Element	А	В	С	D
I_1	5.39	21.50	6.11	17.40
I_2	75.60	41.00	11.87	35.00

Using the above letters identify (i) alkali metal, (ii) the alkaline earth metal, (iii) the non-metal and (iv) the noble gas.

- ii) What is Effective Nuclear charge? Find the shielding constant and effective nuclear charge of 3d electron and 1s electron in Zinc (Z = 30). (2+3)
- State and explain the basis of the Pauling electronegativity scale. 12. i)
 - ii) Calculate the N–O and C–O bond length. Given: Radius of N, O and C are 70, 74 and 77 pm, respectively, while electronegativities of those three are 3.0, 3.5 and 2.5 respectively. (3+2)

[5 X 5]

(3+2)

	0	of your answer.	-				
		Explain, with su concept.	itable example, the	e <i>p</i> -type and <i>n</i> -t	ype semiconductors from metallic bond	d (2+3)	
15.	Selec	t the best respon	use for each question	n below:		[1 X 5]	
		-	lowing molecules h		oment?		
	(3	(a) NH ₃	(b) CHCl ₃	(c) H_2O	(d) BF ₃		
	(ii) E	Energy band gap	size for insulators	is in the range	eV.		
	(3	(a) 1-2	(b) 2-3	(c) 3-4	(d) >4		
	(iii) N	Mobility of holes	s is	_ mobility of elect	trons in intrinsic semiconductors.		
	(3	(a) Equal	(b) Greater than	(c) Less than	(d) cannot define		
	(iv) V	Which of the foll	lowing substances h	has the least ionic	character in its bond?		
	(3	(a) CCl ₄	(b) KCl	(c) BeCl ₂	(d) $MgCl_2$		
		•		-	pair towards itself is called		
	(3	a) Electron affin	nity (b) Electroneg	gativity (c) Dipo	ole moment (d) Ionization potential		
16.	n	number and struc	cture of the crystal l	attice.	is 618 pm, determine the coordination		
	 Can the colour intensities of Silver halides (AgX) be explained on the light of Fajan's Rule? Explain if possible, with suitable explanation. 						
				<u>Group – C</u>			
An	swer <u>a</u>	ny five question	15:			[5×5]	
17.	Defin	ne and explain th	ne physical significa	nces of the follow	wing terms: (a) Free energy (b) Entropy	.(21/2+21/2)	
18.	i) V	What is Joule-Th	nomson Effect?				
	<i>,</i>		omson coefficient.				
	iii) V	Write down the s	significance of Joule	e-Thomson coeffi	cient.	(2+2+1)	
19.	i) V	What do you mea	an by inversion tem	perature?			
			tomic gas (one mol L. What is the chan		n 27 °C to 227 °C. The volume expand py?	s (1+4)	
20.	Write	e a short note on	Gibbs-Helmholtz e	equation and expla	ain its significance.	(3+2)	
21.		.T.P., 11.2 litre r entropy change		d with 36 g of He	elium. Calculate the entropy change and	d (5)	

Estimate the electronegativity of phosphorus if P-P distance in elemental phosphorus is 220

The electron affinity (EA) of 'Au' (Gold) is abnormally high and it may exist as auride —

Are the bond angles H-C-H and F-C-F in CH_2F_2 molecule equal? Give reasons in support

(3+2)

13. i)

14. i)

ii)

pm.

Justify.

- 22. Show that
 - (i) for a reversible adiabatic process of an ideal gas, $TV^{\gamma-1} = \text{constant}$
 - (ii) for an adiabatic process of an ideal gas, $W = C_V(T_1 T_2)$ (2¹/₂+2¹/₂)
- 23. i) Prove that maximum work can be obtained from an isothermal reversible process.
 - ii) Prove that adiabatic PV–curve is more steeper than isothermal PV–curve. (3+2)
- 24. Define degrees of freedom. Write down the law of equipartition of energy principle and show different degrees of freedom for a linear molecule using the law. (2+3)

_____× _____